
OpenMPOpenMP

25 January 2007
CMPT370
Dr. Sean Ho
Trinity Western University

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 22

Review last timeReview last time

 Memory models:

● Shared (SMP)
● Distributed (cluster)
● Hybrid

 Programming models:

● Threads (PThreads, OpenMP)
● Message passing (MPI)
● Data- parallel (HPF)
● Hybrids

 Automatic vs. manual parallelizat ion

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 33

OpenMPOpenMP

 An industry standard API for shared- memory
parallelism for high- performance computing

 Programmers interface to OpenMP via:

● Compiler direct ives (#pragma omp parallel)
● Library subroutines (omp_get_num_threads())
● Environment variables (OMP_NUM_THREADS)

 Fork/ join threading model:

● Fork at start of a parallel construct
● Join (implied barrier) at end of construct

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 44

OpenMP parallel constructsOpenMP parallel constructs

 #pragma omp parallel

● Code duplicated to all threads

 #pragma omp for

● Distribute iterat ions of a for loop

 #pragma omp sect ions

● #pragma omp sect ion
● #pragma omp section
● Each section has different code, one thread per

sect ion

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 55

Compiling with OpenMPCompiling with OpenMP

 OpenMP has newly been added to gcc/ g+ + 4.1.0

● Also in MSVC 2005 (not .NET)

 Include: #include < omp.h>

 Compile with f lag: - fopenmp

 Link with: - lgomp (GNU OpenMP)

 See sample Makefiles on carmel under
/ home/ seanho/ cmpt370/

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 66

Shared vs. private variablesShared vs. private variables

 By default , most variables in OpenMP are shared
by all threads

● Except variables declared within a block inside
a parallel region

● Or can declare a variable to be private to each
thread

● Also a reduce operat ion to combine part ial
results from each thread (more later)

 helloworld.c example on carmel:

● / home/ seanho/ cmpt370/ helloworld/

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 77

OpenMP synchronization pragmasOpenMP synchronization pragmas

 #pragma omp parallel

● Next block (use {}) is a parallel sect ion

 #pragma omp crit ical

● Next block should be one- thread- at- a- t ime

 #pragma omp single

● next block should be done by only one of the
threads

 #pragma omp barrier

● Wait here for all threads: synchronizat ion point

 Others: master, ordered, atomic, f lush

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 88

How many threads?How many threads?

 Can have fewer threads than physical processors

● Wasting the other processors

 Or more threads than processors

● Threads will queue, wait ing for a free CPU

 By default , OpenMP will use as many threads as
there are processors (8 on carmel)

 Change at runtime with environment variable:

● OMP_NUM_THREADS= 1 ./ helloworld

 Can also change inside program with a library
subrout ine

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 99

OpenMP library routinesOpenMP library routines

 int omp_get_num_threads()

 int omp_set_num_threads()

● How many threads are current ly in use

 int omp_get_thread_num()

● Which thread id I am

 double omp_get_wtime()

● Get wall- clock t ime in number of t icks

 double omp_get_wtick()

● Get length of a t ick in seconds

 A few others (not many) for locking

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1010

Scheduling a for loopScheduling a for loop

 How is work distributed amongst threads?

● schedule(stat ic) (optional chunk- size)

 Divide iterations into chunks, distribute evenly
amongst threads

● schedule(dynamic) (optional chunk- size)

 Queue of chunks: threads take next available chunk

● schedule(guided) (optional chunk- size)

 Like dynamic, but chunk size is exponentially
reduced

● schedule(runt ime)
 Follow OMP_SCHEDULE environment variable

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1111

ReduceReduce

 The reduction(op:var) f lag to an OpenMP pragma
specif ies a var that each thread contributes
towards; the results are combined using the op

● e.g.: f inding sum of a vector

#pragma omp for reduction(+ :sum)

for (i = 0; i < num_iters; i+ +)

sum + = vector[i];
● Ops: sum(+), product(*), and(&&), or(| |).

 See pi- leibniz.c example

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1212

Lab2: Your own OpenMP programLab2: Your own OpenMP program

 Ideas:

● Numerical integration (like pi- leibniz.c)
● Generating fractals: see mandelbrot/ example
● Dictionary/ brute force encryption cracking?
● Prime number generat ion?

23 Jan 200723 Jan 2007CMPT370: memory modelsCMPT370: memory models 1313

TODOTODO

 Lab2 due Tue 6Feb

● Design + implement your own OpenMP
program

● Lab write- up

